化学

計算化学・ケモインフォマティクスを中心に記事を書いています.特にpythonのケモインフォマティクス用ライブラリであるRDKitについて解説しています.

化学

pythonで一般化線形モデル:statsmodelsを用いたロジスティック回帰で化合物の変異原性予測

「pythonのstatsmodelsを使った重回帰分析で溶解度予測:AICによるモデル選択」という記事では, $$ 溶解度 = \beta_{0} + \beta_{1} \times x_{1} + \beta_{2} \times x_{2} + ... $$ という...
化学

pythonのstatsmodelsを使った重回帰分析で溶解度予測:AICによるモデル選択

これまで本ブログでは,pythonの機械学習用ライブラリであるscikit-learnを用いて,回帰タスクである化合物の溶解度予測に取り組むことで,機械学習について学んできました. 線形モデルを用いた化合物の溶解度予測:通常最小二乗法,Ridge回帰,Lasso回帰 交差検...
化学

RDKitを用いて制約付きで立体構造を生成する

我々が興味のある分子のほとんどは3次元構造を有していますから,分子の立体構造の理解は大切です. 本ブログではこれまで,「RDKitによる3次元構造の生成」という記事ではRDKitを用いて立体構造をどのように発生させるかについて扱いました.その際いくつかのアルゴリズムについて学び...
化学

RDKitでOpen3DALIGNを用いた立体構造の重ね合わせ

異なる分子の立体構造を重ね合わせて眺めることで得られる知見が多くあります.これまで本ブログでは「RDKitによるコンフォマーの生成」という記事で,同じ分子のコンフォマーを重ね合わせて表示することを行いました.その際には鋳型となる原子の番号を指定することで重ね合わせの中心骨格を決め...
化学

RDKitからPyMOLを利用する

本ブログではJupyter Notebook上で分子構造を描画するためのライブラリーとして「py3Dmolを使って化学構造をJupyter上で美しく表示する」という記事でpy3Dmolについて説明しました.一方で生命科学の分野で,分子構造を可視化する際に使われるポピュラーなソフト...
化学

RDKitと二次元構造式:CoordGenで大員環化合物を綺麗に描画

「RDKitでケモインフォマティクスに入門」や「RDKitの分子Molオブジェクトを扱う」 という記事では, RDKitのMolオブジェクトはSMILESなどから生成しただけでは各原子の座標情報を保持していないこと(注:下記の囲みも参照) 座標情報は2Dまたは3Dの対応する...
化学

機械学習モデルの評価方法:化合物の変異原性の有無を題材に

これまでAmes試験と呼ばれるテストの結果を用いて,化合物の変異原性の有無を予測する機械学習モデルを構築してきました. 「RDKitとscikit-learnで機械学習:変異原性をk-最近傍法で予測」ではk-最近傍法 「scikit-learnの決定木でAmes試験データセ...
化学

データ分析と前処理:パイプライン処理で化合物の溶解度を推定

これまで化合物の変異原性データや溶解度データを用いて,いくつかの機械学習アルゴリズムでモデルを構築してきました.これらのモデルは分子の構造・特徴を何らかの形で入力情報として与えることで,変異原性の有無や溶解度の値が出力される「教師あり学習」モデルでした. その際,分子の入力情...
タイトルとURLをコピーしました